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Using large-scale experiments and machine learning
to discover theories of human decision-making
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Predicting and understanding how people make decisions has been a long-standing goal in many
fields, with quantitative models of human decision-making informing research in both the social
sciences and engineering. We show how progress toward this goal can be accelerated by using large
datasets to power machine-learning algorithms that are constrained to produce interpretable
psychological theories. Conducting the largest experiment on risky choice to date and analyzing the
results using gradient-based optimization of differentiable decision theories implemented through
artificial neural networks, we were able to recapitulate historical discoveries, establish that there
is room to improve on existing theories, and discover a new, more accurate model of human
decision-making in a form that preserves the insights from centuries of research.

U
nderstanding howpeoplemake decisions
is a central problem in psychology and
economics (1–3). Having quantitative
models that can predict these decisions
has become increasingly important as

automated systems interact more closely with
people (4, 5). The search for such models goes
back almost 300 years (6) but intensified in
the latter half of the 20th century (7, 8) as em-
pirical findings revealed the limitations of the
idea that peoplemake decisions bymaximizing
expected utility (EU) (9–11). This led to the de-
velopment of new models such as prospect
theory (PT) (8, 12). Recently, this theory-driven
enterprise has been complemented by data-
driven research using machine learning to
predict human decisions (13–19). Although
machine learning has the potential to accel-
erate the discovery of predictive models of hu-
man judgments (20–22), the resulting models
are limited by small datasets and are often
uninterpretable (5). To overcome these chal-
lenges, we introduce a new approach based on
defining classes of machine-learning models
that embody constraints based on psycholog-
ical theory. We present the largest experiment
studying people’s choices to date, allowing us
to use our approach to systematically evalu-
ate existing theories, identify a lower bound
on optimal prediction performance, and pro-
pose a new descriptive theory that reaches
this bound and contains classic theories as
special cases.
We focus on risky choice, one of the most

basic and extensively studied problems in de-
cision theory (8, 23). Risky choice has largely
been examined using “choice problems,” sce-

narios in which decision-makers face a choice
between two gambles, each of which has a set
of outcomes that differ in their payoffs and
probabilities (Fig. 1A). Researchers studying
risky choice seek a theory, which we formal-
ize as a function that maps from a pair of
gambles, A and B, to the probability P(A) that
a decision-maker chooses gamble A over gamble
B, that is consistent with human decisions
for as many choice problems as possible. Dis-
covering the best theory is a formidable chal-
lenge for two reasons. First, the space of choice
problems is large. The value and probability of
each outcome for each gamble define the di-
mensions of this space, meaning that describ-
ing a pair of gambles could potentially require
dozens of dimensions. Second, the space of
possible theories is even larger, with theories
of choice between two options spanning all
possible functions mapping choice problems
in ℝ2d to ℝ, i.e., from a vector of d gamble
outcomes and d associated probabilities to a
choice probability.
Machine-learning methods such as deep

neural networks (24) excel at function approx-
imation (25, 26) and thus provide a tool that
could potentially be used to automate theory
search. However, thesemethods typically require
large amounts of data. Historically, datasets on
risky choice have been small: Influential papers
focused on a few dozen choice problems (27) and
the largest previous dataset featured <300 (28).
Consequently, off-the-shelf methods have per-
formed poorly in predicting human choices (29).
Furthermore, even when data are abundant,
the functions discovered by machine-learning
algorithms are notoriously hard to interpret
(30), making for poor explanatory scientific
models.
To address these challenges, we collected a

large dataset of human decisions for almost
10,000 choice problems presented in a format
that has been used in previous evaluations of
models of decision-making (27–29) (Fig. 1A).

This dataset includes >30 times the number
of problems in the largest previous dataset
(27) (Fig. 1B). We then used this dataset to
evaluate differentiable decision theories that
exploit the flexibility of deep neural networks
but use psychologically meaningful constraints
to pick out a smooth, searchable landscape of
candidate theories with shared assumptions.
Differentiable decision theories allow the intu-
itions of theorists to be combinedwith gradient-
based optimization methods frommachine
learning to broadly search the space of theories
in a way that yields interpretable scientific
explanations.
More formally, we define a hierarchy over

decision theories (Fig. 1C) reflecting the addi-
tion of an increasing number of constraints
on the space of functions. These constraints
express psychologically meaningful theoret-
ical commitments. For example, one class of
theories contains all functions in which the
value that people assign to one gamble can be
influenced by the contents of the other gamble.
If theories in this class are more predictive
than those that belong to the simpler classes
contained within it (e.g., where the value of
gambles are independent), then we know
that these simpler theories should be elimi-
nated. We enforce each constraint by modify-
ing the architecture of artificial neural networks,
resulting in differentiable decision theories. This
theory-driven approach to defining constraints
contrasts with genericmethods for constraining
neural networks, such as restricting their size or
the ranges of their weights (31). After optimizing
a differentiable theory to best fit human be-
havior, it will ideally have picked out the optimal
theory in its class.
The lowest levels of our hierarchy contain

the simplest theories, including classic models
of choice. Objectively, gambles that yield higher
payouts in the long run are those with higher
expected value (EV), with the value V(A) of
gamble A being

P
i xipi, where outcome i of

gamble A has payoff xi and probability pi.
In our hierarchical partitioning, this is the
simplest possible theory because it has no
descendants. Moving up the hierarchy, and
following expected utility (EU) theory (6, 32),
we can ask the question of whether payouts xi
are viewed subjectively by decision-makers:
V(A) =

P
i u(xi)pi. When u(•) is the identity

function u(x) = x, EU reduces to EV and thus
contains it. Theories based on EU have his-
torically relied on explicit proposals for the
form of u(•), which are typically simple, non-
linear parametric functions (33). By contrast,
we search the entire class by learning the op-
timal u(•) with a neural network (we call the
resulting model “neural EU”), and use auto-
matic differentiation to optimize the model
P(A)º exp{h

P
iu(xi)pi}, where h captures the

degree of determinism in people’s responses
(34). This can be viewed as a neural network
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architecture in which the output layer is a
softmax function ehzj=Skehzk , there is one
node for each gamble, the hidden units in
the second-to-last layer encode the utilities of
the outcomes, and the final layer of weights
corresponds to their probabilities (Fig. 1D).
Figure 2 shows that the discovered form of
u(•) is similar to those proposed by human
theorists (i.e., decreasing marginal utility and
asymmetry) but outperforms any of those the-
ories and can be learned using only a quarter
of our data. [All theories are evaluated on their
cross-validated generalization performance,
meaning that model complexity is already im-
plicitly accounted for in our analyses; we focus
on mean-squared error (MSE) for consis-
tency with previous evaluations of models of
decision-making (28, 29) but also include analy-
ses of cross-entropy in the supplementary
materials.] The decision preference accuracy
[i.e., the proportion of problems in which the
model prediction for P(A) is >0.5 when the
observed proportions are also >0.5] for this
model was 81.41%.
Next, mirroring subjective EU (7) and PT, we

can ask the question of whether the proba-
bilities (pi) are also viewed subjectively by

decision-makers: v(A) = Siu(xi)p(pi). Again,
p(•) can take on classic forms or be learned
fromdata (“neural PT”). Figure 2B shows that
a form of p(•) that outperforms all proposals
by human theorists can be learned using one-
fifth of our data and exhibits overweighting
of events with medium to low probability.
This overweighting is much smaller than is
typically found in applications of PT, in part
reflecting the difference in the range of choice
problems that we consider relative to classic
studies. We will return to this point later. The
decision preference accuracy for this model
was 82.33%.
Allowing separate p(•) functions for posi-

tive and negative outcomes, respectively, and
applying them cumulatively to an ordered set
of outcomes corresponds to the most popular
modern variant of PT: cumulative PT (CPT)
(12, 35) (Fig. 2B; see the materials and meth-
ods). Notably, “neural CPT” does not contain
neural PT because the former cannot violate
stochastic dominance.With small amounts of
data, corresponding to the largest previous
experiments (28, 29), CPT outperforms PT,
accounting for its popularity. However, this
trend reverses as the amount of data is in-

creased, which illustrates that suitably large
datasets, in addition to aiding machine learn-
ing, provide more robust evaluation.
Next, we can ask whether the possible out-

comes of a gamble affect the perception of
each other and their probabilities and vice
versa. More formally, we learn a neural network
f(•,•) such that P(A) º exp{f(xA,pA)}, where
xA and pA are the vector of payoffs and prob-
abilities associated with gamble A, respec-
tively. This function class computes the value
of a gamble (“value-based”) like PT and others
but does not enforce linearity when combining
payoffs and probabilities. Notably, this class of
models includes those that violate the in-
dependence axiom in decision-making (32).
Figure 3A shows that there exists a value-
based theory that results in a greater improvement
in performance over PT than PT does over EU.
Relaxing the constraint that each gamble

is valued independently results in our most
general class of functions, “context-dependent”
functions g(•)whereP(A) = g(xA,pA, xB,pB). This
class of models includes those that violate both
the independence and transitivity axioms in
decision-making (32). This formulation pro-
vides a way to estimate the performance of the
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Fig. 1. Applying large-scale experimentation and
theory-driven machine learning to risky choice.
(A) Experiment interface in which participants
made choices between pairs of gambles (“choice
problems”) and were paid at the end of the experiment
based on their choice in a single randomly selected
gamble. (B) Each pair of gambles can be described by
a vector of payoffs and probabilities. Reducing the
resulting space to two dimensions (2D) allows us to
visualize coverage by different experiments. Each point
is a different choice problem, and colors show
reconstructions of the problems used in influential
experiments (green), the previous largest dataset
(red), and our 9831 problems, which provide much
broader coverage of the problem space. This 2D
embedding results from applying t-distributed
stochastic neighbor embedding (t-SNE) to the hidden-
layer representation of our best-performing neural
network model. (C) We define a hierarchy of
theoretical assumptions expressed as partitions over
function space that can be searched. More complex
classes of functions contain simpler classes as
special cases, allowing us to systematically search the
space of theories and identify the impact of con-
straints that correspond to psychologically meaningful
theoretical commitments. All model classes are
described in the main text. (D) Differentiable decision
theories use the formal structure of classic theories
to constrain the architecture of the neural network.
For example, our EU model uses a neural network to
define the utility function but combines those
utilities in a classic form, resulting in a fully
differentiable model that can be optimized by
gradient descent.
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near-optimal theory because it has no con-
straints (except that it must be differentia-
ble). In particular, this model is simply a fully
unconstrained neural network that takes all
information about both gambles as input and
outputs P(A). The move from value-based to
context-dependent functions results in the
largest improvement yet in prediction per-
formance and a decision preference accuracy
of 84.81%. Because value-based theories assign
values to gambles independently, comparing
their performance with this less-constrained
neural network implicitly asks whether the
value of gambles is contextual (i.e., whether
one gamble and its parameters affect one’s
perception of the other gamble); our results
indicate that this is the case and, further, that
the impact of this effect is substantial.
One context-dependent psychological model

that has outperformed others in recent evalua-
tions is a process model called Best Estimate
and Sampling Tools (BEAST) (27), whichmakes
decisions by combining EV with the results of
four different kinds of simulations, a subset of
which integrates information about both out-
comes and probabilities across gambles (27).
Despite outperforming all other models with
small amounts of data, Fig. 3A shows that
BEAST falls short of our best-performing
model in the context-dependent class as the
amount of data increases. Further, we found

that several othermodels fromdiversemodeling
traditions in risky choice that also incorporate
various forms of context performed no better
than PT on our dataset (see Fig. 3B and the
supplementary materials). We also replicated
our core findings in a second dataset of 1000
problems collected from a new group of par-
ticipants, including showing that we see sim-
ilar results when evaluating themodels at the
level of individual participants (see the sup-
plementary materials).
Having evaluated the most competitive the-

ories at each level of our hierarchy, we find
that the best-performing theory belongs to
the most complex class we defined and lies
outside of all simpler classes. This implies
that the best predictions of human choices
result from viewing payoffs and their prob-
abilities subjectively but, more importantly, in
ways that are sensitive to the context of the
competing gamble. However, as a relatively
unconstrained neural network, this model
provides limited psychological insight and
is highly susceptible to overfitting the noise in
small datasets because of its expressive
power.
To better understand which aspects of con-

text were responsible for bettermodel perform-
ance, we conduct a second pass of our method.
In particular, we define a class of models
(“contextual multiplicative”) where V(A) =

Si∈Au(xi, c1)p(pi, c2) and c1 and c2 are vectors
potentially containing information from xA,
xB, pA, and pB that condition u(•) and p(•),
allowing subjective rewards and probabilities
to vary depending on the problem (see the
supplementary materials for more details).
Results are shown in Fig. 3A. When condi-
tioning utilities on other outcomes within
a gamble (c1 = xA; “intra-gamble outcome
context”), performance improves only mar-
ginally and does not match the value-based
class. However, when instead conditioning
utilities on all other outcomes across both
gambles (c1 = {xA, xB}; “inter-gamble outcome
context”), performance improvesmarkedly. Fur-
ther allowing probabilities to interact (c2 =
{pA, pB}; “inter-gamble outcome/probability
context”) provides marginal improvement. Ex-
isting theories that fall into these classes per-
formed no better than PT (i.e., where c1 and c2
contain no information; see the supplemen-
tarymaterials). Finally, a “fully contextual mul-
tiplicative” model, where c1 = c2 = {xA, xB, pA,
pB} fails to improve performance, likely because
it has twice as many parameters as the context-
dependentmodel as a result of conditioning two
networks on all information fromboth gambles.
This analysis helps to illuminate the key
properties of the best-performing theory
foundwithin the context-dependent class: Out-
comes and probabilities are largely combined
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Fig. 2. Comparing classic theories proposed by human researchers with
differentiable decision theories discovered through machine learning.
(A) EU. In the left panel, EU with a learned optimal utility function outperforms
classic models (gray lines) given enough data. Performance is assessed in
terms of prediction error (MSE) on ~1000 unseen choice problems as a
function of the amount of training data used for model fitting (~9000 choice
problems, average of 50 runs). The right panel shows that the utility function

identified through this optimization method reproduces many of the
characteristics suggested by human theorists. (B) PT. In the left panel,
PT with learned utility and probability weighting functions outperforms classic
models (gray lines) given enough data. CPT, the modern variant of PT,
performs better with small amounts of data, on the scale of previous
experiments, but slightly worse with more data. The right panel shows the
optimized utility and probability weighting functions for PT.
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multiplicatively to form an average but are
subjectively transformed in ways that depend
on information across both gambles, especial-
ly outcomes.
To identify a theory that has these charac-

teristics, and is more continuous with previous
accounts of human decision-making, and able
to be trained with fewer data, we compared
EU theory with the best-performing context-
dependent model, identifying patterns in the
types of problems where PT performed less
well. We found that the largest differences
concerned dominated gambles (i.e., where all
outcomes of one gamble are better than all
outcomes of the other) and pairs of gambles
that pit likely losses against high uncertainty
(see the supplementary materials). To address
this, we defined a new model based on the
hypothesis that people use different strategies

for different choice problems, reminiscent of
the dual process theories of risky choice (36).
These strategies can correspond to classic mod-
els, preserving their insights. Further, if we al-
low the selection of these strategies based on
the properties of both gambles, then this mod-
el is a simpler, more specific form of the con-
textual multiplicative class, which normally
selects from a theoretically infinite set of mod-
els (i.e., utility and weighting functions) in-
stead of a relatively compact, fixed set.
The resulting mixture of theories (MOT)

model learns to apply one of two utility func-
tions and one of two probability weighting
functions. Two accompanying neural networks
take both gambles as input and output convex
mixture weights for both subjective functions,
which are learned jointly in a “mixture of ex-
perts” architecture (37). For dominated gambles,

the gamble values determined by thesemixtures
are bypassed and a learned, fixed probability of
choosing the dominated gamble is taken as the
prediction. Figure 4A shows that this model
generalizes to unseen problems as well as our
best, fully unconstrained neural network (context-
dependent), with a similar decision prefer-
ence accuracy of 84.15%, and is able to achieve
better performance with fewer data. The
functional forms rediscovered by the mix-
ture model correspond closely to classic EU
and PT models (Fig. 4B). In particular, one
learned utility function clearly produces loss
aversion (8) and one probability weighting
function overweights low probabilities in a
way that is more consistent with the classic
effects modeled by PT (8). By looking at the
problems where the different components are
used, we can seewhen these characteristics are
most important to capturing human decisions
(Fig. 4, lower panels). The best predictors of the
utility function used, which an ablation anal-
ysis reveals is the most important context
effect (see the supplementary materials), were
maximum outcome, minimum outcome, and
outcome variability. The best predictors for
probability weighting functions were mini-
mum outcome and number of losses (see the
supplementary materials). This focus on the
context of outcomes across gambles is cor-
roborated by similar performance being pro-
duced by a variant ofMOT inwhich themixture
network is only given outcomes as input (Fig.
4A, dashed green line). The clusters of problems
assigned to each subjective function emerge in a
representation based on hidden activations
from the context-dependent model, suggesting
that the MOT is capturing a structure similar
to this unconstrained model.
We also found that MOT provides a com-

petitive model of individual-level behavior. In
particular, we fine-tuned the parameters of
the MOT model above trained on aggregate
data to the behavior of individual participants,
obtaining an average MSE of 0.058 on out-
of-sample decisions for each participant. For
comparison, we repeated this procedure using
the best-performing parametric form of PT, a
common choice for individual-level modeling
of risky choice, obtaining an average MSE of
0.063. See the supplementary materials for
additional details and results.
Our results illustrate the successes of human

ingenuity, in particular, finding good functional
forms for the EU and PTmodels. However, they
also illustrate that this ingenuity can be sup-
plemented by an automated search overmodels
given enough data, and that as the class of
models becomes less restrictive and the dataset
becomes larger, this automated approach be-
gins to substantially outperform the best mod-
els of decision-making developed by human
researchers. This does not mean that theories
developed by psychologists and economists are
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Fig. 3. Complex decision theories exhibit better predictive performance than simpler ones. (A) Performance
of differentiable decision theories. As model flexibility increases, performance increases, along with data
requirements. (B) Performance comparison between differentiable decision theories and 21 other well-known
theories across the risky choice literature, none of which outperforms PT (see the supplementary
materials for more details).
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not valuable for predicting human behavior,
even in the big-data regime: Our MOT model
was able to leverage large amounts of data to
learnwhich classic theory best describes human
behavior in different contexts. These models,
variants of EU and PT, have been subject to
rigorous mathematical analyses over decades,
which are preserved in this new theory.
Further, whereasMOT is a special case of the

contextual multiplicative model, it performs
better due to theory-driven simplifications and
is thus more sample efficient. Human ingenu-
ity will also be required for potentially trans-
lating this descriptive theory into normative
and processmodels (38, 39). We anticipate that
our approach of defining differentiable theories
that express meaningful psychological con-
straints can be applied in other settings as
we continue to gather more data on human
decision-making.
Finally, it is noteworthy that models of

decision-making developed byhuman researchers

tend to outperformourmachine-learningmod-
els when we only consider amounts of data
that are consistent with the scale of previous
behavioral research, but this trend reverses
when more data are available. This pattern
may imply that the complexity of psycholog-
ical theories has been constrained by limited
data. As we begin tomove into a regime of big
behavioral data, our theories are going to have
to become increasingly complex to be able to
capture the systematic variation that these
larger datasets reveal. The use of large datasets
(40, 41) has revolutionized machine learning,
computer vision, and artificial intelligence. Our
study is one of the first to use a similar meth-
odology in systematically investigating theories
of human cognition. We believe that the use of
large datasets coupled with machine-learning
algorithms offers enormous potential for uncov-
ering new cognitive and behavioral phenomena
that would be difficult to identify without such
tools (42).
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