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Summary

Generalized linear models (GLMs) are well-established tools for regression and classification
and are widely applied across the sciences, economics, business, and finance. Owing to their
convex loss, they are easy and efficient to fit. Moreover, they are relatively easy to interpret
because of their well-defined noise distributions and point-wise nonlinearities.
Mathematically, a GLM is estimated as follows:

min
β0,β

1

N

N∑
i=1

L(yi, β0 + βTxi) + λP(β)

where L(yi, β0 + βTxi) is the negative log-likelihood of an observation (xi, yi), and λP(·)
is the penalty that regularizes the solution, with λ being a hyperparameter that controls the
amount of regularization.
Modern datasets can contain a number of predictor variables, and data analysis is often ex-
ploratory. To avoid overfitting of the data under these circumstances, it is critically important
to regularize the model. Regularization works by adding penalty terms that penalize the model
parameters in a variety of ways. It can be used to incorporate our prior knowledge about the
parameters’ distribution in a structured form.
Despite the attractiveness and importance of regularized GLMs, the available tools in the
Python data science eco-system do not serve all common functionalities. Specifically:

• statsmodels provides a wide range of noise distributions but no regularization.
• scikit-learn provides elastic net regularization but only limited noise distribution options.
• lightning provides elastic net and group lasso regularization, but only for linear (Gaus-

sian) and logistic (binomial) regression.
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Pyglmnet is a response to a fragmented ecosystem

Pyglmnet offers the ability to combine different types of regularization with different GLM
noise distributions. In particular, it implements a broader form of elastic net regularization
that include generalized L2 and L1 penalties (Tikhonov regularization and Group Lasso, re-
spectively) with Gaussian, Binomial, Poisson, Probit, and Gamma distributions. The table
below compares pyglmnet with existing libraries as of release version 1.1.

pyglmnet
scikit-
learn statsmodels lightning py-glm Matlab

glmnet in
R

Distributions
Gaussian x x x x x x x
Binomial x x x x x x x
Poisson x x x x x
Poisson
(softplus)

x

Probit x
Gamma x x x
Regularization
L2 x x x
L1 (Lasso) x x x x
Generalized
L1 (Group
Lasso)

x x x

Generalized
L2
(Tikhonov)

x

Pyglmnet is an extensible pure Python implementation

Pyglmnet implements the algorithm described in Friedman, J., Hastie, T., & Tibshirani, R.
(2010) and its accompanying popular R package glmnet. As opposed to python-glmnet or
glmnet_python, which are wrappers around this R package, pyglmnet is written in pure Python
for Python 3.5+. Therefore, it is easier to extend and more compatible with the existing data
science ecosystem.

Pyglmnet is unit-tested and documented with examples

Pyglmnet has already been used in published work (Benjamin et al., 2017; Bertrán et al.,
2018; Höfling, Berens, & Zeck, 2019; Rybakken, Baas, & Dunn, 2019). It contains unit tests
and includes documentation in the form of tutorials, docstrings and examples that are run
through continuous integration.

Example Usage

Here, we apply pyglmnet to predict incidence of violent crime from the Community and Crime
dataset, one of 400+ datasets curated by the UC Irvine Machine Learning Repository (Dua
& Graff, 2019) which provides a highly curated set of 128 demographic attributes of US
counties. The target variable (violent crime per capita) is normalized to the range of [0, 1].
Below, we demonstrate the usage of a pyglmnet’s binomial-distributed GLM with elastic net
regularization.

Jas et al., (2020). Pyglmnet: Python implementation of elastic-net regularized generalized linear models. Journal of Open Source Software,
5(47), 1959. https://doi.org/10.21105/joss.01959

2

http://github.com/glm-tools/pyglmnet/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
http://statsmodels.sourceforge.net/devel/glm.html
https://github.com/scikit-learn-contrib/lightning
https://github.com/madrury/py-glm/
https://www.mathworks.com/help/stats/glmfit.html
https://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html
https://github.com/civisanalytics/python-glmnet
https://github.com/bbalasub1/glmnet_python
https://glm-tools.github.io/pyglmnet/
https://doi.org/10.21105/joss.01959


from sklearn.model_selection import train_test_split
from pyglmnet import GLMCV, simulate_glm, datasets

# Read dataset and split it into train/test
X, y = datasets.fetch_community_crime_data()
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size=0.33)

# Instantiate a binomial-distributed GLM with elastic net regularization
glm = GLMCV(distr='binomial', alpha=0.05, score_metric='pseudo_R2', cv=3,

tol=1e-4)

# Fit the model and then predict
glm.fit(Xtrain, ytrain)
yhat = glm.predict_proba(Xtest)

As illustrated above, pyglmnet’s API is designed to be compatible with scikit-learn (Buit-
inck et al., 2013). Thus, it is possible to use standard idioms such as:

glm.fit(X, y)
glm.predict(X)

Owing to this compatibility, tools from the scikit-learn ecosystem for building pipelines,
applying cross-validation, and performing grid search over hyperparameters can also be em-
ployed with pyglmnet’s estimators.
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