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Do large datasets provide value to psychologists? Without a sys-
tematic methodology for working with such datasets, there is a
valid concern that analyses will produce noise artifacts rather than
true effects. In this paper, we offer a way to enable researchers
to systematically build models and identify novel phenomena
in large datasets. One traditional approach is to analyze the
residuals of models—the biggest errors they make in predict-
ing the data—to discover what might be missing from those
models. However, once a dataset is sufficiently large, machine
learning algorithms approximate the true underlying function
better than the data, suggesting, instead, that the predictions
of these data-driven models should be used to guide model
building. We call this approach “Scientific Regret Minimization”
(SRM), as it focuses on minimizing errors for cases that we
know should have been predictable. We apply this exploratory
method on a subset of the Moral Machine dataset, a public col-
lection of roughly 40 million moral decisions. Using SRM, we
find that incorporating a set of deontological principles that
capture dimensions along which groups of agents can vary
(e.g., sex and age) improves a computational model of human
moral judgment. Furthermore, we are able to identify and inde-
pendently validate three interesting moral phenomena: criminal
dehumanization, age of responsibility, and asymmetric notions of
responsibility.

moral psychology | machine learning | decision-making | scientific regret

The standard methodology in psychological research is to iden-
tify a real-world behavior, create a laboratory paradigm that

can induce that behavior, and then test a variety of hypotheses
on a group of participants. This methodology was first pioneered
over 100 y ago and remains the de facto approach today. While
it enables researchers to dissociate individual variables of inter-
est, it can also lead to overfixation on a specific paradigm and the
small amount of variations it offers in contrast to more broadly
sampling the space of experiments relevant to the behavior of
interest. As a result, several researchers have started to call for
a shift toward mining massive online datasets via crowdsourced
experiments (1–8), because the scale offered by the Internet
enables scientists to quickly evaluate thousands of hypotheses on
millions of participants.

The Moral Machine experiment (7) is one recent example
of a large-scale online study. Modeled after the trolley car
dilemma (9–11), this paradigm asks participants to indicate how
autonomous cars should act when forced to make life-and-death
decisions. In particular, participants were presented with two
types of dilemmas: pedestrians versus pedestrians, in which an
empty car must choose between killing two sets of pedestrians
(Fig. 1), and passengers versus pedestrians (not shown), in which
a car must choose between saving its passengers or a group of
pedestrians. The Moral Machine experiment collected roughly
40 million decisions from individuals in over 200 countries, mak-
ing it the largest moral reasoning experiment ever conducted. In
addition to the vast number of judgments collected, the exper-
iment operated over a rich problem space: The many possible
combinations of 20 different types of agents (e.g., man, girl,

female doctor, dog) as well as contextual information (position
of the car, crossing signal) resulted in millions of unique dilem-
mas being presented to participants. With all these variations,
the question thus becomes: for any given dilemma, do partici-
pants prefer the car to stay or swerve? Furthermore, what factors
influence each decision?

Psychologists have developed a standard statistical approach
for analyzing behavioral data to answer such questions: Identify
all of the possible predictors for an individual’s decision and fit a
model using these predictors. By analyzing the statistical signifi-
cance of each predictor or an overall model metric that penalizes
complexity [e.g., the Akaike information criterion (AIC) (12)],
the researcher finds a model that best trades off model complex-
ity with accuracy. Unfortunately, this approach does not scale
well with large datasets. Statistical significance is achieved with
lower effect sizes in large samples, and complexity penalties are
dominated by measures of fit such as the log-likelihood. As a
result, when the dataset is sufficiently large, this approach will
always favor the more complex model even if the increase in pre-
dictive accuracy per data point is trivial, making it difficult to gain
insights into the data.

An even stronger critique of this approach is that it assumes
prior knowledge of the relevant predictors. In the Moral
Machine dataset, the question is not just how important the dif-
ferent factors might be to making moral judgments but what
these factors are to begin with. This suggests the need for
exploratory data analysis, a ”detective-like” methodology of gen-
erating and evaluating hypotheses (13, 14). One may try to test
all possible interactions, but there can easily be an exponential
blowup in the number of parameters, reducing the interpretabil-
ity and thus the explanatory power of the model. For example,
a naive featurization of the Moral Machine dataset results in
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Fig. 1. A sample moral dilemma using the Moral Machine paradigm (7).
Here, the participant must choose whether an empty car should stay and
kill a girl, old woman, and a dog, who are all illegally crossing, or whether
the car should swerve and kill an infant, a woman, and a dog, who are all
legally crossing.

more than 11,000 three-way interactions. Given that the Moral
Machine dataset allows 40-way interactions and the relevant
predictors may be complex nonlinear functions of the lower-
level features, this approach would be difficult to implement in
practice. What is needed is an efficient and systematic way of
conducting exploratory data analyses in large datasets to identify
interesting behaviors and the features that give rise to them.

Understanding the Moral Machine dataset in this manner is
simply a microcosm of the broader scientific enterprise. Con-
sider a scientist interested in moral psychology. How does she
contribute to the field? She reads papers and combines that
knowledge with her own personal experiences, building an inter-
nal model that can predict behaviors in different settings. In
parallel, she reads the scientific literature to find models that
explain these effects. Then, by analyzing the differences between
her own mental model and the literature, she either proposes an
explanation for a known phenomenon or hypothesizes a novel
effect. She conducts an experiment that evaluates her claim and
continues this scientific process again.

We believe large datasets should be tackled in the same way,
and we formalize this intuition in a process we call “Scientific
Regret Minimization” (SRM), by analogy to the notion of regret
minimization in machine learning (15). First, we suggest that
researchers should leverage the size of large datasets to train the-
oretically unconstrained machine learning models to identify the
amount of variance in the dataset that can be explained (16–20).
Next, because these models do not necessarily give insight to the
underlying cognitive processes, a simple and interpretable psy-
chological model should be fit on the same dataset. Researchers
should then critique the psychological model with respect to the
black box model rather than the data. The intuition here is that
the psychological model should only be penalized for incorrectly
predicting phenomena that are predictable (i.e., we should pay
close attention to those errors that result in regret). This cri-
tiquing process should continue until the predictions of both
models converge, thereby ending with a model that jointly maxi-
mizes predictive and explanatory power. The residuals from this
process may correspond to novel effects, and one can run sepa-
rate experiments that independently validate them. A summary
of this approach is outlined in Fig. 2.

The method of refining models by analyzing their errors (also
known as “residuals”) is often employed in exploratory data anal-
ysis (21–23). In this paradigm, researchers begin by proposing a

model and fitting it to the data. By looking at the inputs where
the model’s predictions and the data diverge, they attempt to
identify new relevant features that will hopefully increase the
model’s accuracy. They then incorporate these new features into
the model, fit it to the data, and continue repeating the process.

Our approach is different because we suggest that, once the
dataset is sufficiently large, models should be critiqued with
respect to a powerfully predictive model rather than the data.
Critiquing with respect to the data in large datasets can be dif-
ficult because the largest residuals often reflect noise. Formally,
let f (x ) be the true function we are trying to understand, and
let the data be y = f (x )+ ε, where ε∼N (0,σ2

ε ). Furthermore,
let us assume we are trying to predict the data with a psycho-
logical model g(x ). The expected squared residual between the
psychological model and the data is

E
p(x ,y)

[
y − g(x )

]2
= E

p(x)

[(
f (x )− g(x )

)2]
+σ2

ε . [1]

That is, the expected residual between the model and the data,
y − g(x ), will be the true residual, f (x )− g(x ), plus a term that
captures the noise variance. (Derivations of all results appear in
Materials and Methods.) Throughout this paper, we will refer to
the residuals between the model and data as the raw residuals.
Eq. 1 indicates that the correlation between the raw residuals
and the true residuals will have an upper bound determined by
the noise variance, thus highlighting an important problem with
using them to guide model building. The manual process of cri-
tiquing models with respect to the raw residuals often focuses

Fig. 2. SRM. After collecting a large dataset, we use machine learning mod-
els to separate the signal from the noise. We then critique psychological
models with respect to the signal identified by the machine learning model
and continue doing so until both of the models converge.
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on using the largest k residuals to formulate new predictors.
However, as the number of unique inputs increases, these k
residuals will mostly reflect noise, because E[max |ε|] increases
as well.

If we think back to our hypothetical scientist, she is analyzing
the differences between her internal model and the psychological
models in the literature. Once she has read enough of the liter-
ature and has enough real-world experience, her internal model
will be more sophisticated than a simple table lookup of the data.
Formally, let f̂ (x ) correspond to a data-driven machine learn-
ing algorithm, such as a neural network. The expected residual
between this model and the psychological model is

E
p(x ,y)

[
f̂ (x )− g(x )

]2
= E

p(x)

[(
f (x )− g(x )

)2
+

2
(
f (x )− g(x )

)(
f̂ (x )− f (x )

)
+
(
f̂ (x )− f (x )

)2]
.

[2]

We will refer to these residuals as the smoothed residuals. The
latter two terms in the right-hand expression correspond to the
covariance of the predictive and psychological models’ errors,
and the generalization error of the predictive model. When the
expression in Eq. 2 is less than the expression in Eq. 1, i.e.,

E
p(x)

[
2
(
f (x )− g(x )

)(
f̂ (x )− f (x )

)
+
(
f̂ (x )− f (x )

)2]
<σ2

ε ,

[3]

the smoothed residuals will be more highly correlated with the
true residuals than will the raw residuals. Because the general-
ization error of sufficiently flexibile data-driven machine learning
algorithms decreases with the amount of the data by which they
are trained (24), the above inequality will hold when the dataset
is sufficiently large. Once this condition is met, we should critique
the psychological model with respect to the machine learning
model rather than with respect to the dataset. Fig. 3 demon-
strates an example of how smoothed residuals become more
representative of the true residuals than do the raw residuals as
the dataset becomes large. In practice, it is difficult to know when
the dataset is large enough for this condition to be reached. For
this paper, we approximated it as the point at which the machine
learning model outperformed the psychological model.

As a case study, we apply SRM to the Moral Machine dataset.
We demonstrate that a multilayer feedforward neural network

outperforms simple psychological models for predicting people’s
decisions, and we then continuously critique a rational choice
model until its predictive accuracy rivals that of the neural net-
work. The result is an informative, interpretable psychological
theory that identifies a set of moral principles that inform peo-
ple’s judgments—exactly the kind of insight that is relevant to
informing policy around new technologies such as autonomous
vehicles. This process also allows us to identify three subtle and
complex moral phenomena, which we validated by running pre-
registered experiments. Our end product is 1) a computational
model of moral judgment that jointly maximizes explanatory and
predictive power as well as 2) the identification and replication
of several principles behind human moral reasoning.

Results
Computational Modeling.
Formalization. SRM first calls for identifying a paradigm of
interest and then critiquing a simple and interpretable psycho-
logical model with respect to a data-driven predictive model.
We restricted ourselves to the subset of the Moral Machine
dataset that contained pedestrians vs. pedestrians dilemmas
(N = 15,226,477). We used a rational choice model (25, 26)
as our psychological model to explain human moral judgment,
assuming that, in the Moral Machine paradigm, humans con-
structed values for both sides of pedestrians (i.e., vleft and vright)
and saved the side with the higher value. Each side’s value was
determined by aggregating the utilities of its agents,

vside =
∑
i

ui li , [4]

in which ui is the utility given to every agent type i (e.g., man,
girl, female doctor, dog), and li represents the number of those
agents on that side. This formalization assumes that a partici-
pant’s choice c obeys the softmax choice rule, which states that
participants choose to save a side in the following way:

P(c= left|vleft, vright)=
evleft

evleft + evright
. [5]

We implemented this rule by fitting a logistic regression model
to the data in order to infer the utility vector u. We called this
model the “Utilitarian” model.

This model, however, did not incorporate the main inspira-
tion behind the trolley car dilemma: a resistance to intervening
and thus killing bystanders, which is not justified by utilitarian

Fig. 3. SRM demonstration. (Left) A graph that outlines the true polynomial function, the data drawn from the polynomial function (with added noise),
and a neural network’s (NN) prediction. (Middle) The correlation between the raw residuals and the true residuals versus the correlation between the
smoothed residuals and the true residuals for a simple linear model fit to the data. (Right) The average squared residual between the data and the true
function versus the average residual between the neural network and the true function. As predicted, smoothed residuals correlate better with the true
residuals when the error of the neural network falls below the noise in the data. Ten simulations were run for each dataset size, and error shading in Middle
and Right reflect ±1 SEM.
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Fig. 4. Metrics for different models trained on subsets of the Moral Machine data. (Top) Performance of initial choice models and neural network as a
function of dataset size. Five bootstrapped samples were taken for every dataset size. Error bars indicate ±1 SEM. (Bottom) Comparison of a choice model
and a neural network before incorporating axes of differences versus after incorporating axes of differences. The addition of these features resolves much
of the gap between the choice model and the neural network. Error bars indicate ±1 SEM.

calculus. In order to incorporate such principles, we created a
“Deontological” model in which the value of a side is

vside =
∑
m

λm fm . [6]

Here, λm refers to the strength of principle m , and fm is a
binary variable indicating whether that principle was relevant to
the given side. We proposed that two potential principles were
relevant in the Moral Machine paradigm. The first was that a
side was penalized if saving it required the participant to swerve.
This penalty has been the primary focus of many moral psychol-
ogy experiments based on the trolley car dilemma (11, 27, 28).
Second, because the Moral Machine dataset had three differ-
ent crossing signal statuses (crossing legally, crossing illegally,
and the absence of a crossing signal), we added a penalty if a
side’s pedestrians were crossing illegally. This side might have
been penalized by participants because the participants were
waiving their rights to protection by violating the law (29), and
participants may have preferred to kill the pedestrians whose
rights have been waived. We used logistic regression to infer
the values λ.

Lastly, given research demonstrating that individuals have
both utilitarian and deontological tendencies (30–34), we created
a “Hybrid” model in which the value of a side is a combination
of utilitarian and deontological features,

vside =
∑
i

ui li +
∑
m

λm fm . [7]

This model served as our baseline psychological model to iterate
upon during SRM.

Central to SRM is that, in addition to training these three
choice models, we need to train a data-driven machine learning
model. We built a standard multilayer feedforward neural net-
work with 42 inputs: 20 corresponding to the agents on the left,
20 for the agents on the right, one for the car side, and one for

the crossing signal status, thus completely specifying the given
dilemma. (It should be noted that one variable for the crossing
signal status of the left-hand side is sufficient because the cross-
ing signal status of the right-hand side is just the opposite). These
inputs were the same as the Hybrid model, except that the Hybrid
model had the added constraint that the value of an agent was
constant across both sides (i.e., a girl on the left side was just as
valuable as a girl on the right side), while the neural network had
no restriction.

Finally, as a comparison to a standard data analysis method,
we applied a Bayesian variable selection method to a model that
started off with all features given to the Hybrid model as well
as all two- and three-way interactions. Further details about this
model are outlined in SI Appendix.
Initial results. Fig. 4, Top reports the results of training all of the
models on differently sized subsets of the data. Each model was
trained on 80% of the subsets, and the metrics here reflect the
results when tested on the held-out 20%. This procedure was
completed for five different splits of the data. We report accuracy
and area under the curve (AUC), two commonly used metrics in
evaluating models of binary decisions. Furthermore, we also cal-
culated the normalized AIC, a metric in which a smaller number
suggests a better model (12).

In this training, the rational choice models performed
extremely well at small sizes, and their performance stayed rela-
tively consistent as the dataset size increased. On the other hand,
the neural network performed poorly at small sizes, but became
better with larger ones and eventually surpassed the choice
models.∗ We also want to point out that the neural network had
a better AIC than the Hybrid model despite the fact the for-
mer had over 3,000 parameters while the latter only had 22. This

*Furthermore, it should be noted that many modern neural networks have problems
with calibration even when they have a better AUC (35). We thus computed a calibra-
tion plot (SI Appendix, Fig. S1) to ensure the neural network served as a good predictive
model.
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result affirms our earlier point that metrics like the AIC become
uninformative, reducing to a measure of the log-likelihood, when
the dataset is sufficiently large.

Most importantly, the neural network’s eventual performance
suggested there were systematic effects that our choice mod-
els were predicting incorrectly. We leveraged these residuals
via SRM to build a better choice model of human moral
judgment.

Improving the Model.
Identifying axes of differences. The standard methodology for
critiquing models suggests prioritizing the raw residuals, the
largest differences between the choice model and the data.
Table 1 reports the five largest of these with a minimum sam-
ple size of 100 participants. We claim that the residuals for these
dilemmas may often reflect noise and that the neural network’s
predictions are more representative of the true function than
the data are. For example, in the largest raw residual, a car
is headed toward a group of four humans (a man, a woman,
a girl, and a male executive). On the other side is a dog and
three cats. According to the data, over 99% of the 649 partic-
ipants in this dilemma stayed in the lane and chose to kill the
humans instead of the animals. The choice model predicted a
strong effect in the opposite direction, and this prediction was
reasonably close to the neural network’s prediction, suggesting
that the choice model may not be mispredicting here. To confirm
this, we looked at the dilemmas that followed these conditions:
the car was headed toward agents that comprised men, women,
girls, male executives, or any combination of them; the other side
comprised dogs and/or cats; there was an absence of a crossing
signal; the number of agents on each side were identical; and at
least 50 participants responded to the dilemma. There were 45
such dilemmas. In 44 of these 45 dilemmas, only 11.3 to 25.5% of
participants chose to kill the side with humans. The 45th dilemma
was the one with the largest residual, and here, 99.4% of par-
ticipants chose to kill the human side. The results of the 44
other dilemmas suggest that the data for this dilemma are noisy,
and thus we shouldn’t critique the choice model for disagreeing
with the data here.

Similarly, consider the second-largest raw residual. Here, a car
is headed toward an old woman and a pregnant woman, who are
crossing illegally. On the other side is a dog and cat crossing
legally. Both the data and the neural network predicted par-
ticipants would not kill the humans. However, the magnitudes

Table 1. Biggest differences between choice model and data

Proportions show observed or predicted proportion killing left side.

were drastically different, and the correct magnitude is needed to
understand the priority of this residual. In the data, only 5.1% of
the 924 participants killed the humans, while the neural network
predicted 25.8% of participants would. Like above, we conducted
an analysis of the data in similar dilemmas. We looked at dilem-
mas in which the car was headed toward agents that were either
pregnant women, old women, or both; the pedestrians in front of
the car were crossing illegally; on the other side of the car were
animals; the number of agents on the left and right side were
equivalent; and at least 50 people responded to the dilemma. In
12 of the 13 dilemmas, 14.7 to 35.8% of participants chose to
kill the side with humans. The 13th was the dilemma reflected
here, and thus the data of similar dilemmas suggest the neural
network’s prediction is more accurate than the data’s reported
value. Therefore, while this dilemma exhibits a large residual for
the choice model, the magnitude of the residual is overestimated
when critiquing with respect to the data.

Table 2 reports the largest smoothed residuals, that is, the
largest differences between the choice model and the neural
network. We suggest that these residuals reflect the “true resid-
uals” better than the data do. In these dilemmas, participants
must decide whether the car should stay and kill the illegally
crossing human or swerve and hit the legally crossing animal.
Most participants chose to swerve, and the neural network cor-
rectly predicted this result. However, the Hybrid choice model
often predicted the opposite. Looking at its coefficients, we can
understand why: There was a penalty for both illegally crossing
and swerving, and the sum of those penalties outweighed the
utility differences between the human and the animal. We clus-
tered those dilemmas as humans-versus-animal dilemmas, and it
seemed that, in these instances, humans should be saved regard-
less of their crossing signal status and relationship to the side
of the car. This represented a deontological principle, a moral
rule independent of the consequences of the action (36). Thus,
while our Hybrid choice model only used two deontological prin-
ciples, we added a third for future iterations: If a given dilemma
requires choosing between humans or animals, humans should
be preferentially saved. This feature would have been difficult
to justify when looking at the residuals from the data, because
the largest residual there actually exhibited a strong effect in the
opposite direction. Going down the list of smoothed residuals, we
were able to cluster another group of dilemmas with high errors
and conducted a similar analysis (SI Appendix, Table S1). Most
salient to us in those dilemmas was an age gradient. Similar to
above, future iterations of our model incorporated a deontolog-
ical principle explicitly favoring the young in old-versus-young
dilemmas.

Incorporating Axes of Differences. Humans versus animals and old
versus young were two of six “axes of difference” the Moral
Machine researchers explicitly manipulated in their experiment,
the other four being fat versus fit, more versus less, male ver-
sus female, and high status versus low status. While these axes
were not explicitly revealed to the participant, the residuals we
identified suggested participants were sensitive to them. We
incorporated these six new features as additional deontological
principles into our Hybrid choice model and plotted the results
in Fig. 4, Bottom. The new choice model, Hybrid + Axes, had
a significantly better accuracy than the Hybrid model, demon-
strating that we were able to build a better predictive model
of moral judgment while retaining interpretability and explana-
tory power. Furthermore, we added these axes as inputs into the
neural network to create Neural Network + Axes. This model
outperformed the original network at smaller dataset sizes but
became seemingly identical to it at larger ones, suggesting that
the original network could construct these axes once there were
sufficient data. These axes were at least as complex as 20-way
interactions.
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Table 2. Biggest differences between choice model and neural
network

Proportions show observed or predicted proportion killing left side.

This human part of identifying features from residuals is
important in generating explanatory insights of human behav-
ior. First, it allows the researcher to connect the new features
with past research. For example, the “axes of difference” we
found are reminiscent of work by Tversky regarding “features of
similarity” (37). Second, this manual step helps ensure that the
researcher is incorporating psychologically meaningful features
rather than spurious information. For example, Zech et al. (38)
found that machine learning models were overfitting to hospital-
specific information in a training set of medical images, rather
than validly approximating the true functional mapping between
the images and diagnoses. A human-led featurization step as we
propose would help ensure that the new features for the simple,
interpretable model do not reflect this spurious information.

Despite the initial success in increasing accuracy after the first
iteration, the model-building process still displayed a potential
for improvement (as indicated by the AUC curve), and thus
we conducted more iterations of our loop. Using the smoothed
residuals from the second iteration, we identified axes not explic-
itly manipulated by the researchers, such as pregnant women and
doctors versus other humans, and split previous axes into subaxes
(e.g., young versus old was split into young versus adult, adult
versus old, and young versus old). The third and fourth iterations
modeled two-way and three-way conjunctive features between
the axes of differences, the crossing signals, and the intervention
status (e.g., a car headed toward illegally crossing humans in a
humans-versus-animals dilemma).

Table 3 displays the final results of our model-building pro-
cess. It is up to the modeler to decide when to stop the process,
and, in this case study, we stopped when the metrics between the
new choice model and the neural network were maximally close.
SI Appendix, Tables S2–S7 reports the largest smoothed and raw
residuals for the later iterations. The features we identified at
these later iterations reflect more subtle and complicated prin-
ciples. While there was conceptual overlap between the largest
smoothed residuals and raw residuals for the first iteration, the
gap seems to grow at the later iterations, in which the larger raw
residuals seem to be very different from the largest smoothed
residuals. Our resulting model predicted human decisions with
an accuracy comparable to the neural network and was entirely
interpretable (all features and their weights are outlined in SI
Appendix, Table S8). Table 3 also shows the maximum possible
accuracy when using the aggregate data to predict the choice for

every given dilemma via a table lookup algorithm (i.e., if 90% of
participants in a given dilemma chose to swerve, the empirical
prediction for that dilemma would be 90%; as a result, it should
be noted that the performance of this “model” was not calculated
out-of-sample, while all of the other models were).

Empirical Results. SRM is a form of exploratory data analysis.
Such methods have the vulnerability of overfitting to data and
thus need to be complemented with confirmatory data analysis
techniques (39). We identified and empirically validated interest-
ing effects from three iterations of SRM. First, regarding a new
axis of difference, we found convincing evidence that participants
excluded criminals from moral protections afforded to other
human agents. We previously discussed the need to incorporate
a deontological principle in humans-versus-animals dilemmas
that prefers saving the human side. While doing this increased
the model’s overall predictive power, our model started to err
on a subclass of other dilemmas: criminals versus animals. In
order to build a better model of human moral judgment, we had
to introduce a separate criminals-versus-animals feature, thus
dehumanizing criminals in the eyes of our model.

Second, we were able to identify an intuitive interaction
between kids and an illegal crossing status. Consider two dilem-
mas (illustrated in SI Appendix, Fig. S2) where, in the first, the
participant must choose between saving an old woman or a girl
and, in the second, the participant must choose between sav-
ing either an old woman and a woman or a girl and a woman.
Rational choice models are based on a linear utility function and
would consider these dilemmas to be treated equivalently, but
the Moral Machine data and the neural network revealed that
participants did not always do so. Rather, participants treated the
dilemmas as equivalent when the side with children was crossing
legally or if there was an absence of a crossing signal, but not
when the side with children was illegally crossing. In the latter
cases, the side with children in the second dilemma (i.e., with
an adult) was penalized more than the corresponding side in the
first dilemma.

Lastly, there was an intriguing asymmetric interaction between
car side and crossing signal status in both male-versus-female
dilemmas and fat-versus-fit dilemmas. Here, when the car was
headed toward the higher-valued individual (i.e., the female or
the athlete) in the absence of a crossing signal, the probabil-
ity of saving the individual was roughly halfway between the
probability of saving them when they were legally crossing and
the probability of saving them when they were illegally cross-
ing. However, this relationship did not hold when the car was
headed toward the lower-valued individual. Rather, in those
cases, the probability of saving the individual was significantly
lower than the halfway point and close to the probability of saving
them when they were illegally crossing. Intuitively, lower-valued
individuals aren’t given the “benefit of the doubt” when their
crossing legality is ambiguous.

Table 3. Comparison of model fit under different metrics

Model type Accuracy AUC AIC

Deontological 0.630 0.631 1.303
Utilitarian 0.719 0.779 1.161
Hybrid 0.756 0.814 1.052
Hybrid + Axes (iteration 1) 0.760 0.823 1.021
Additional Axes (iteration 2) 0.764 0.825 1.019
Two-way conjunctions (iteration 3) 0.764 0.829 1.003
Three-way conjunctions (iteration 4) 0.768 0.830 0.999
Neural network 0.768 0.833 0.999
Empirical upper bound 0.804 0.890 N/A

The AIC requires the number of model parameters, which is not
applicable (N/A) for the empirical upper bound.
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We ran three preregistered experiments on Amazon’s
Mechanical Turk in order to replicate and confirm these effects
revealed by SRM.

Experiment 1: Criminal Dehumanization. In this experiment, partic-
ipants chose between saving a human and a dog. We varied the
car side (dog, human), type of human (criminal, homeless man,
old man, adult man), and crossing signal status (legally crossing,
illegally crossing, N/A [not applicable]) for a total of 24 dilem-
mas. Each participant saw 4 of these 24 dilemmas. We calculated
the percentage of participants that chose to save the human over
the dog in every dilemma. For each car side and crossing sig-
nal combination, we conducted a χ2 test determining whether
participants chose to save criminals less than each of the other
three humans. This resulted in 18 separate χ2 analyses, and, for
these 18 analyses, criminals were saved at a rate between 11%
and 28% less than the other human agents. All analyses were sig-
nificant at the α=0.05 level, and 17 of the 18 were significant at
theα=0.001 level. Graphical results are displayed in Fig. 5. Tab-
ular results and the original Moral Machine results are reported
in SI Appendix, Tables S9 and S10.

Our results in experiment 1 suggest that criminals are excluded
from certain protections most humans are given, namely, pre-
ferring to save them compared to dogs. These findings are
consistent with a long line of work in sociology and psychology
suggesting criminals are treated as a lower class of individuals
than others in society when it comes to evaluating their status
as a human being (40–43). Opotow (44) proposed that dehu-
manization is a form of moral exclusion in which a victim can
lose their entitlement to compassion. Besides moral exclusion,
other potential frameworks to understand participants’ behavior
may be through retributive justice (45, 46) and standard conse-
quentialist reasoning. We believe both of these factors were also
present in this paradigm, but that they were already taken into
account in our choice model as the inferred weight given to crim-
inals. The moral exclusion argument is supported by the fact that
incorporating a humans-versus-animals principle was an impor-
tant predictor of Moral Machine behavior, but that we had to
specifically remove this label from situations that pitted crimi-
nals versus animals. Since these axes of differences were derived
from the features of the agents (47), our modeling suggests that
participants did not honor the “human” feature for criminals.

Experiment 2: Age of Responsibility. In this experiment, partici-
pants either chose between saving a child or an old adult or they
chose between saving a child and an adult versus an old adult
and an adult. We varied car side (child, old adult), crossing sig-
nal condition (legally crossing, illegally crossing, N/A), and sex
(male, female) for a total of 24 stimuli. Each participant saw
6 of the 24 dilemmas. We aggregated responses for all dilem-

mas in order to calculate the percentage of participants that
chose to save the young side. For each car side, sex, and cross-
ing signal combination, we conducted a χ2 analysis comparing
the percentage that saved the young side in a child versus old
adult dilemma to the percentage that saved the young side in a
child and adult versus old adult and adult dilemma. Of these 12
analyses, we hypothesized 4 would be significant while the other
8 would not be. Specifically, we hypothesized that the analyses
where the young side was crossing illegally would be signifi-
cantly different but that the dilemmas in the other crossing signal
conditions would not be. Three of the four hypothesized signif-
icant effects were significant at the α=0.05 level, while seven
of the eight hypothesized null effects were not significant at the
α=0.05 level. Results are graphically represented in Fig. 6. Tab-
ular results and the original Moral Machine results are reported
in SI Appendix, Tables S11 and S12.

The results from experiment 2 suggest children are given a
privileged status when assigning blame. The jurisprudential logic
for the privileged status of children in the law is that children
often lack the mens rea, that is, the knowledge of wrongdoing
and a necessary condition for criminal conviction, when partak-
ing in illegal activity (48–50). [An intuition for why mens rea is
considered important is encapsulated by Justice Oliver Wendell
Holmes Jr.’s famous quip: “Even a dog distinguishes between
being stumbled over and kicked.” (51).] Earlier, we proposed
that the negative penalty associated with crossing illegally is jus-
tified by a consensual theory of punishment (29), in which an
individual waives their rights to being protected by the law when
committing an illegal action. In our experiment, when the ille-
gally crossing pedestrians solely comprised children, participants
did not penalize them as much as when there was one adult.
Formally, the jurisprudential logic behind participants’ decisions
here would be that the children did not have the necessary mens
rea when crossing illegally, and thus they did not willingly waive
their rights to being protected by the law. As a result, they should
not be penalized as much as adults, who presumably did have the
mens rea and thus knowingly waived their rights. Furthermore,
the empirical effect is stronger when the car is on the side of
the old adult, which is intuitive under the consensual theory of
punishment framework, as it seems more reasonable to excuse a
child compared to an adult for not realizing they were crossing
illegally when the car was on the opposite side.

Experiment 3: Asymmetric Notions of Responsibility. Each dilemma
in this experiment was either a male versus female or an athlete
versus a large person. We varied car side and crossing signal sta-
tus, as well as age (adult, old) for the male–female dilemmas and
sex for the fat–fit dilemmas, for a total of 24 dilemmas. Each
participant only saw 4 of the 24 possible dilemmas. For each
axis (i.e., male–female or fat–fit) and car side combination, we

Fig. 5. Dehumanization of criminals. When pitted against dogs, participants save criminals at a significantly lower rate than other human agents. N/A refers
to dilemmas in which there are no crossing signals.
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Fig. 6. Age of responsibility. Graphs demonstrate the differences in participants’ judgments when deciding between a child and an old adult versus when
deciding between a child and an adult versus an adult and an old adult. The dilemmas are roughly equivalent when the side with children is either crossing
legally or when there is absence of a crossing signal, but not when they are crossing illegally.

conducted a χ2 analysis comparing the percentage that saved
the higher-valued individual in the absence of a crossing signal
to the average of the percentages that saved the higher-valued
individual in the legal and illegal crossing settings. We hypoth-
esized that, when the car was headed toward the lower-valued
individuals, the proportion saved in the absence of a crossing sig-
nal condition would be significantly less than the mean of the
other two crossing signal settings, while we did not think there
would be a significant difference when the car was headed toward
the higher-valued individuals. All four of our hypothesized sig-
nificant effects were significant at the α=0.05 level, and all four
of our hypothesized null effects were not significant at this level.
Results are graphically represented in Fig. 7. Tabular results and
the original Moral Machine results are reported in SI Appendix,
Tables S13 and S14.

The results in experiment 3 demonstrated that, when the car
is headed toward the higher-valued individual and there is an
absence of a crossing signal, the individual is treated half as if
they are crossing legally and half as if they are crossing ille-
gally. The same is not true when the car is headed toward the
lower-valued individual. In those cases, the individual is treated
in almost the same manner as when they are illegally crossing.
One conjecture for this behavior is a form of motivated rea-
soning (52–54). Participants may have started off by assuming
that the pedestrian in the same lane as the car is the one at
fault. However, because the participant was motivated to save
the higher-valued individual, they treated the absence of a cross-
ing signal as an ambiguity that suggested equal probability of
crossing legally or illegally. Conversely, when the car is headed
toward the lower-valued individual, participants may have been
motivated to infer that the individual was probably crossing ille-

gally, and thus use the fact they are in front of the car to justify
this belief.

Discussion
When there are so many data in front of us, where do we even
start to look? This problem is not unique to large-scale exper-
iments. Rather, it is the problem of the scientific enterprise in
general. The scientific method has offered a solution: Identify
the signal in the data and iteratively critique hypotheses until
they are able to explain as much of the signal as possible. In
this paper, we formalized this idea as an iterative loop in which
we critique interpretable and theoretically constrained psycho-
logical models with respect to a data-driven machine learning
algorithm. Standard forms of exploratory data analysis critique
models with respect to the data, but, once the dataset is suffi-
ciently large, a purely data-driven machine learning algorithm
like a neural network can often provide a better estimate of the
true underlying function than the data do.

We illustrated this methodology in the domain of moral
decision-making. Psychological models of moral reasoning are
often derived from consequentialist and deontological theories
in moral philosophy (55, 56), and these theories have been
extremely fruitful in motivating moral psychology research. How-
ever, it is inevitable that a highly theoretically driven scientific
program will lead to incomplete models of human behavior. By
contrasting these constrained models with data-driven models,
we were able to identify shortcomings and use them to build a
model that is both theoretically grounded and powerfully predic-
tive. We found that incorporating axes of differences and their
interactions with other deontological principles improved the
accuracy of a rational choice model of moral decision-making.
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Fig. 7. Asymmetric notions of responsibility. The dotted line indicates the average of the legal and illegal crossing conditions. When the car is headed
toward the high-valued individual, participants’ judgments are close to that predicted by the dotted line. However, when the car is headed toward the
lower-valued individual, their judgments are close to the ones in which the individual is crossing illegally.

We then validated three of our findings by running independent
preregistered experiments.

Our work is conceptually similar to model compression in
which a “simple” model is trained on the predictions of a com-
plex model (57). However, in that line of work, simplicity is
defined with respect to a runtime processing, whereas, in ours,
it is defined with respect to interpretability. Both our work and
theirs leverage the fact that a neural network can serve as a
universal function approximator (58, 59). They use it as their
rationale to use a neural network to approximate the predictions
of boosting trees, while we use it as our rationale to estimate the
true underlying function. Because neural networks are the “sim-
ple” model in model compression, there is no residual analysis,
and thus the majority of the work is dedicated to identifying ways
to create a large dataset so that a neural network can be trained
on, while the majority of our methodology is centered around
residual analysis.

SRM is also similar to research by Rudin and colleagues (60,
61), in which the goal is to create interpretable machine learn-
ing models for high-stakes decisions. Our results in Table 3
demonstrate that there is not necessarily a tradeoff between
accuracy and interpretability, as commonly thought by many
machine learning researchers. Rather, if given structured fea-
tures, interpretable models can perform similarly to (and
perhaps even outperform) black box machine learning mod-
els. The methodology we propose in this paper is a system-
atic process for identifying and building structured features
in the data.

The Moral Machine dataset proved to be a fruitful case
study for SRM: Rational choice models performed well, but we
were still able to use a neural network to identify shortcom-
ings once the dataset became sufficiently large. We expect that

this methodology can be used in different domains, especially
in mature fields (which may have unwittingly missed important
systematic effects), but also in newer fields wherein the gaps
between theoretically inspired models and data-driven models
remain large.

Future work can extend our method in at least three differ-
ent ways. The first is automating the identification and clustering
of residuals into human-interpretable features. The second is
that, while we assumed a specific functional form (i.e., a rational
choice model) for the final model, it is plausible that this the-
oretical model is incorrect, and thus we may need to develop
a systematic way to identify the proper functional form itself.
Third, the features identified in the resulting model are not nec-
essarily unique—they depend on the sequence of models that
have been compared. Following SRM with fitting a model with
a set of features that includes and augments those that are dis-
covered may provide a way to make principled inferences about
feature uniqueness.

Lastly, on a broader note, we hope to further the development
of a synergistic correspondence between psychology and data
science approaches in scientific modeling (62–65). Cognitive sci-
ence famously grew out of the intersection of six different fields
(66), but some have suggested that this revolution did not cre-
ate the emergence of a new discipline (67–69). Rather, research
often proceeds independently in each contributing field. One
potential reason for the lack of unification lies on a philosophical
level: Different scientific traditions have different epistemic val-
ues and are methodologically incommensurable (70). For exam-
ple, psychology prioritizes explanation, while machine learning
is almost exclusively focused on prediction, and their methodolo-
gies reflect these differences (71–73). To live up to the promise of
the cognitive revolution, we need to truly integrate the different
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values and methodologies implicit in these related fields. We
hope the approach in this paper offers a step in that direction.

Materials and Methods
Mathematical Analysis and Simulations. The proof for the result in Eq. 1 is
below:
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The proof for the result in Eq. 2 is the following:
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For Fig. 3, data were generated from the polynomial function 3x(x− 2)2(x +

2)2(x + 1), and the input was uniformly sampled from the domain [−2.5, 2.5]
and rounded to the nearest thousandth, thus allowing for multiple samples
of the same data point. Each data point had noise independently drawn
from a normal distribution N (0, 10). The neural network used a “ReLU”
activation function and had two hidden layers, the first with 100 hidden
neurons and the second with 50 hidden neurons. Ten different simulations
were run for each different dataset size.

Computational Modeling. The neural network was trained to minimize the
binary cross-entropy between the model’s output and human binary deci-
sions. We conducted a grid search on the space of hyperparameters to
identify the optimal settings for the network. A neural network with three
32-unit hidden layers and a “ReLU” activation function was used for all
of the analyses in this paper. Keras (74) was used for training the neural
networks, and the networks were optimized through Adam (75). Logistic
regression models were trained via sci-kit learn (76).

When calculating metrics for a given dataset size, five samples of that
size were bootstrapped from the whole dataset. Each sample was split into

training and testing sets. Train/test splits were based on unique dilemmas as
opposed to individual judgments. There was a wide distribution of the num-
ber of participant judgments per unique dilemma, and we wanted both the
training and test sets to have similar distributions. Thus, in order to approx-
imate an 80/20 split, we sorted the dilemmas by the number of judgments
and binned the dilemmas into groups of five. For every bin, four were ran-
domly assigned to the training set, and the fifth was assigned to the testing
set. As a result, all train/test splits were approximately, but not exactly, 80/20
splits.

Empirical Results. The 2,086 participants across 12 conditions were recruited
from Amazon Mechanical Turk and paid $0.50 to participate in an exper-
iment in which they indicated their preferences in 28 Moral Machine
autonomous car dilemmas. The order of all 28 dilemmas was randomized
for each participant. Five of the 28 dilemmas were attention checks. In
the attention checks, participants had the option of either saving or killing
everyone in the dilemma. If they chose to kill everyone more than once,
they were excluded from further analysis. The experiment’s preregistration
called for 163 participants per condition (12 conditions for a total N = 1, 956)
after the exclusion criteria were applied. This study was approved by the
Institutional Review Board at Princeton University. All participants provided
informed consent.

Nine of the remaining 23 dilemmas were passengers versus pedestrian
dilemmas, while 14 were the stimuli for the hypotheses. The nine passengers
versus pedestrian dilemmas were included to add variation because the 14
stimuli used for the hypotheses were all pedestrian versus pedestrian dilem-
mas. Answers for these dilemmas were not analyzed. Furthermore, both the
nine passengers versus pedestrian dilemmas and five attention checks were
kept constant across all 12 conditions.

Because there were a total of 24 possible stimuli for each hypothesis,
hypothesis 1 and hypothesis 3 stimuli were split into six groups of four and
allocated throughout the 12 conditions such that each group was assigned
to 2 conditions. Hypothesis 2 stimuli were split into four groups of six and
allocated such that each group was assigned to three conditions. Thus, of
the 14 dilemmas participants saw for the hypotheses, 4 were for hypothe-
sis 1, 6 were for hypothesis 2, and 4 were for hypothesis 3. The end result
was that all hypothesis 1 and hypothesis 3 stimuli received 326 judgments,
while all hypothesis 2 stimuli received 489 judgments. These sample sizes
were chosen in order to achieve 95% power at detecting a true effect using
the χ2 proportion test at α= 0.05. Effect sizes were estimated using results
from the Moral Machine dataset. It should be noted that our procedure
was different from the original Moral Machine paradigm, which asked par-
ticipants 13 dilemmas and operated over a wider range of experimental
manipulations.

Experiments were coded using the jsPsych software package (77), and the
interface with Amazon Mechanical Turk was provided with psiTurk (78). The
dilemmas were created using the “Design” feature on the Moral Machine
website.

Data from the experiments and the analysis script for the fig-
ures in this paper are uploaded at https://osf.io/25w3v/?view only=
b02f56f76f7648768ce3addd82f16abd (79). The preregistration can also be
accessed from there.
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