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Abstract

Large-scale behavioral datasets enable researchers to use com-
plex machine learning algorithms to better predict human be-
havior, yet this increased predictive power does not always lead
to a better understanding of the behavior in question. In this
paper, we outline a data-driven, iterative procedure that allows
cognitive scientists to use machine learning to generate mod-
els that are both interpretable and accurate. We demonstrate
this method in the domain of moral decision-making, where
standard experimental approaches often identify relevant prin-
ciples that influence human judgments, but fail to generalize
these findings to “real world” situations that place these prin-
ciples in conflict. The recently released Moral Machine dataset
allows us to build a powerful model that can predict the out-
comes of these conflicts while remaining simple enough to ex-
plain the basis behind human decisions.

Keywords: machine learning; moral psychology

Introduction
Explanatory and predictive power are hallmarks of any use-
ful scientific theory. However, in practice, psychology tends
to focus more on explanation (Yarkoni & Westfall, 2017),
whereas machine learning is almost exclusively aimed at pre-
diction. The necessarily restrictive nature of laboratory exper-
iments often leads psychologists to test competing hypotheses
by running highly-controlled studies on tens or hundreds of
subjects. Although this procedure gives a better understand-
ing of the specific phenomenon, it can be difficult to gener-
alize the findings and predict behavior in the “real world,”
where multiple factors are interacting with one another. Con-
versely, machine learning takes full advantage of complex,
nonlinear models that excel in tasks ranging from image clas-
sification (Krizhevsky et al., 2012) to video game playing
(Mnih et al., 2015). The performance of these models scales
with their level of expressiveness (Huang et al., 2018), which
results in millions of parameters that are difficult to interpret.

Interestingly, machine learning has long utilized insight
from cognitive psychology and neuroscience (Rosenblatt,
1958; Sutton & Barto, 1981; Ackley et al., 1985; Elman,
1990), a trend that continues to this day (Banino et al., 2018;
Lzaro-Gredilla et al., 2019). We believe that the reverse di-
rection has been underutilized, but could be just as fruitful.
In particular, psychology could leverage machine learning to
improve both the predictive and explanatory power of cog-
nitive models. We propose a method (summarized in Figure
1) that enables cognitive scientists to use large-scale behav-

Figure 1: A systematic, data-driven procedure for building in-
terpretable models that rival the predictive power of complex
machine learning models.

ioral datasets to construct interpretable models that rival the
performance of complex, black-box algorithms.

This methodology is inspired by Box’s loop (Box &
Hunter, 1962; Blei, 2014; Linderman & Gershman, 2017),
a systematic process of integrating the scientific method with
exploratory data analysis. Our key insight is that training a
black-box algorithm gives a sense of how much variance in
a certain type of behavior can be predicted. This predictive
power provides a standard for improvement in explicit cogni-
tive models (Khajah et al., 2016). By continuously critiquing
an interpretable cognitive model with respect to these black-
box algorithms, we can identify and incorporate new features
until its performance converges, thereby jointly maximizing
our two objectives of explanatory and predictive power.

In this paper, we demonstrate this methodology by building
a statistical model of moral decision-making. Philosophers
and psychologists have historically conducted thought exper-
iments and laboratory studies isolating individual principles
responsible for human moral judgment (e.g. consequentialist
ones such as harm aversion or deontological ones such as not
using others as a means to an end). However, it can be diffi-
cult to predict the outcomes of situations in which these prin-
ciples conflict (Cushman et al., 2010). The recently released
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Moral Machine dataset (Awad et al., 2018) allows us to build
a predictive model of how humans navigate these conflicts
over a large problem space. We start with a basic rational
choice model and iteratively add features until its accuracy
rivals that of a neural network, resulting in a model that is
both predictive and interpretable.

Background
Theories of Moral Decision-Making The two main fam-
ilies of moral philosophy often used to describe human be-
havior are consequentialism and deontology. Consequential-
ist theories posit that moral permissibility is evaluated solely
with respect to the outcomes, and that one should choose
the outcome with the highest value (Greene, 2007). On the
other hand, deontological theories evaluate moral permissi-
bility with respect to actions and whether they correspond to
specific rules or rights.

The trolley car dilemma (Foot, 2002; Thomson, 1984)
highlights how these two families differ when making moral
judgments. Here, participants must determine whether it is
morally permissible to sacrifice an innocent bystander in or-
der to prevent a trolley car from killing five railway work-
ers. The “switch” scenario gives the participant the option to
redirect the car to a track with one railway worker, whereas
the “push” scenario requires the participant to push a large
man directly in front of the car to stop it, killing the large
man in the process. Given that the outcomes are the same for
the “switch” and “push” scenarios (i.e., intervening results in
one death, while not intervening results in five deaths), con-
sequentialism prescribes intervention in both scenarios. De-
ontological theories allow for intervening in the “switch” sce-
nario but not the “push” scenario because pushing a man to
his death violates a moral principle, but switching the direc-
tion of a train does not.

Empirical studies have found that people are much more
willing to “switch” than to “push” (Greene et al., 2001; Cush-
man et al., 2006), suggesting deontological principles factor
heavily in human moral decision-making. Yet, a deontologi-
cal theory’s lack of systematicity makes it difficult to evaluate
as a model of moral judgment (Greene, 2017). What are the
rules that people invoke, and how do they interact with one
another when in conflict? Furthermore, how do they interact
with consequentialist concerns? Would people that refuse to
push a man to his death to save five railway workers still make
the same decision and with the same level of confidence when
there are a million railway workers? Any theory of human
moral cognition needs to be able to model how participants
trade off different consequentialist and deontological factors.

Moral Machine Paradigm As society anticipates au-
tonomous cars roaming its streets in the near future, the trol-
ley car dilemma has left the moral philosophy classroom and
entered into national policy conversations. A group of re-
searchers aiming to gauge public opinion created “Moral Ma-
chine,” an online game that presents users with moral dilem-

(a) An autonomous car is headed towards a group of
three pedestrians who are illegally crossing the street.
The car can either stay and kill these pedestrians or
swerve and kill three other pedestrians crossing legally.

(b) An autonomous car with five human passengers is
headed towards a group of pedestrians who are illegally
crossing the street. Staying on course will kill the pedes-
trians but save the passengers, while swerving will kill
the passengers but save the pedestrians.

Figure 2: Two sample dilemmas in the Moral Machine
dataset. In every scenario, the participant is asked to choose
whether to stay or swerve (Awad et al., 2018).

mas (see Figure 2) centered around autonomous cars (Awad et
al., 2018). Comprising roughly forty million decisions from
users in over two hundred countries, the Moral Machine ex-
periment is the largest public dataset collection on human
moral judgment.

In addition to the large number of decisions, the exper-
iment operated over a rich problem space. Twenty unique
agent types (e.g. man, girl, dog) along with contextual infor-
mation (e.g. crossing signals) enabled researchers to measure
the outcomes of nine manipulations: action versus inaction,
passengers versus pedestrians, males versus females, fat ver-
sus fit, low status versus high status, lawful versus unlawful,
elderly versus young, more lives saved versus less, and hu-
mans versus pets. The coverage and density of this problem
space provides the opportunity to build a model that predicts
how humans make moral judgments when a variety of differ-
ent principles are at play.
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Predicting Moral Decisions
As described earlier, the iterative refinement method we pro-
pose begins with both an initial, interpretable model and a
more predictive black-box algorithm. In this section, we do
exactly this by contrasting rational choice models derived
from moral philosophy with multilayer feedforward neural
networks.

Model Descriptions
We restricted our analysis to a subset of the dataset (N =
12,478,340) where an empty autonomous vehicle must de-
cide between saving the pedestrians on the left or right side
of the road (see Figure 2a for an example). The models we
consider below are tasked to predict the probability of choos-
ing to save the left side.

Interpretable Models Choice models (CM) are ubiquitous
in both psychology and economics, and they form the basis of
our interpretable model in this paper (Luce, 1959; McFadden
et al., 1973). In particular, we assume that participants con-
struct the values for both sides, i.e., vleft and vright, and choose
to save the left side when vleft > vright, and vice versa. The
value of each side is determined by aggregating the utilities
of all its agents:

vside = ∑
i

uili (1)

where ui is the utility given to agent i and li is a binary indi-
cator of agent i’s presence on the given side.

McFadden et al. (1973) proved that if individual variation
around this aggregate utility follows a Weibull distribution,
the probability that vleft is optimal is consistent with the ex-
ponentiated Luce choice rule used in psychology, i.e.,

P(vleft > vright) = P(c = left|vleft,vright) =
evleft

evleft + evright
(2)

In practice, we can implement this formalization by us-
ing logistic regression to infer the utility vector u. We built
three models, each of which provided top-down different con-
straints on the utility vector. Our first model, “Equal Weight,”
required each agent to be equally weighted. At the other ex-
treme, our “Utilitarian” model had no restriction. A third
model, “Animals vs. People,” was a hybrid: all humans were
were weighted equally and all animals were weighted equally,
but humans and animals could be weighted differently.

Research in moral psychology and philosophy has found
that humans use moral principles in addition to standard util-
itarian reasoning when choosing between options (Quinn,
1989; Spranca et al., 1991; Mikhail, 2002; Royzman &
Baron, 2002; Baron & Ritov, 2004; Cushman et al., 2006).
For example, one principle may be that allowing harm is more
permissible than doing harm (Woollard & Howard-Snyder,
2016). In order to incorporate these principles, we moved be-
yond utilitarian-based choice models by expanding the defi-
nition of a side’s value:

vside = ∑
i

uili +∑
m

λm fm (3)

where fm is an indicator variable of whether principle m is
present on the side and λm represents the importance of prin-
ciple m. We built an “Expanded” model that introduces two
principles potentially relevant in the Moral Machine dataset.
The first is a preference for allowing harm over doing harm,
thus penalizing sides that require the car to swerve in order
to save them. Another potentially relevant principle is that it
is more justified to punish unlawful pedestrians than lawful
ones because they knowingly waived their rights when cross-
ing illegally (Nino, 1983). This model was trained on the
dataset to infer the values of u and λ.

Neural Networks We use relatively expressive multilayer
feedforward neural networks (NN) to provide an estimate of
the level of performance that statistical models can achieve in
this domain. These networks were given as inputs the forty-
two variables that uniquely defined a dilemma to each partici-
pant: twenty for the characters on the left side, twenty for the
characters on the right side, one for the side of the car, and
one for the crossing signal status. These are the same inputs
for the “Expanded” choice model. However, the “Expanded”
model had the added restriction that the side did not change
an agent’s utility (e.g., a girl on the left side has the same util-
ity as a girl on the right side), while the neural network had
no such restriction.

The networks were trained to minimize the crossentropy
between the model’s output and human binary decisions. The
final layer of the neural networks is similar to the choice
model in that it is constructing the value of each side by
weighting different features. However, in these networks,
the principles are learned from the nonlinear interactions of
multiple layers and the indicators are probabilistic rather than
deterministic.

To find the optimal hyperparameters, we conducted a grid
search, varying the number of hidden layers, the number of
hidden neurons, and the batch size. All networks used the
same ReLU activation function and and no dropout. Given
that most of these models both performed similarly and
showed a clear improvement over simple choice models, we
did not conduct a more extensive hyperparameter search. A
neural network with three 32-unit hidden layers was used for
all the analyses in this paper.

Model Comparisons
Standard Metrics Table 1 displays the results of the four
rational choice models and the best performing neural net-
work. All models were trained on eighty percent of the
dataset, and the reported results reflect the performance on the
held-out twenty percent. We report accuracy and area under
the curve (AUC), two standard metrics for evaluating classi-
fication models. We also calculate the normalized Akaike in-
formation criterion (AIC), a metric for model comparison that
integrates a model’s predictive power and simplicity. All met-
rics resulted in the same expected ranking of models: Neural
Network, Expanded, Utilitarian, Animals vs. People, Equal
Weight.
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Table 1: Comparison of Standard Metrics

Model Type Accuracy AUC AIC

Equal Weight 0.571 0.616 1.301
Animals vs. People 0.630 0.702 1.234
Utilitarian 0.732 0.780 1.146
Expanded 0.763 0.826 1.046
Neural Network 0.774 0.845 0.983

Performance as a Function of Dataset Size Table 1
demonstrates that our cognitive models aren’t as predictive as
a powerful learning algorithm. This result, however, is only
observable with larger datasets. Figure 3 plots each metric for
each model over a large range of dataset sizes. Choice models
performed very well at dataset sizes comparable to that of a
large laboratory experiment. Conversely, neural networks im-
proved with larger dataset sizes until reaching an asymptote
where N > 100,000, at which point they outperform rational
choice models. These results suggest that while psychologi-
cal models are robust in the face of small datasets, they need
to be evaluated on much larger ones.

Identifying Explanatory Principles
The neural network gives us an aspirational standard of
how our simpler model should perform. Next, our task is to
identify the emergent features it constructs and incorporate
them into our simple choice model.

Calculating Residuals in Problem Aggregates By aggre-
gating decisions for each dilemma, we can determine the em-
pirical “difficulty” of each dilemma and whether our models
predict this difficulty. For example, assume dilemmas A and
B have been proposed to one hundred participants. If ninety
participants exposed to dilemma A chose to save the left side
and sixty participants exposed to dilemma B did, the empiri-
cal percentages for A and B would be 0.90 and 0.60, respec-
tively. An accurate model of moral judgment should not only
reflect the binary responses but also the confidence behind
those responses.

We identified the specific problems where the neural net-
work excelled compared to the “Expanded” rational choice
model. Manually inspecting these problems and clustering
them into groups revealed useful features beyond those em-
ployed in the choice model that the neural network is con-
structing. We formalized these features as principles and in-
corporated them into the choice model to improve prediction.
Two examples are represented in Table 2.

Table 2a describes a set of scenarios where one human
is crossing illegally and one pet is crossing legally. Empir-
ically, users tend to overwhelmingly prefer saving the hu-
man, while the choice model predicts the opposite. Our
choice model’s inferred utilities and importance values reveal
a strong penalty (i.e., a large negative coefficient) for (1) hu-
mans crossing illegally and (2) requiring the car to swerve.

However, the empirical data suggests that these principles are
outweighed by the fact that this is a humans-versus-animals
dilemma, and that humans should be preferred despite the
crossing or intervention status. Thus, the next iteration of
our model should incorporate a binary variable signifying
whether this is an explicit humans-versus-animals dilemma.

We can conduct a similar analysis for the set of scenarios
in Table 2b. Both models output significantly different
decision probabilities, the neural network being the more
accurate of the two. Most salient to us was an effect of
age. Specifically, when the principal difference between the
two sides is age, both boys and girls should be saved at a
much higher rate, and information about their crossing and
intervention status is less relevant. To capture this fact, we
can incorporate another binary variable signifying whether
the only difference between the agents on each side is age.

Incorporating New Features The two features we identified
are a subset of six “problem types” the Moral Machine re-
searchers used in their experiment: humans versus animals,
old versus young, more versus less, fat versus fit, male versus
female, and high status versus low status. These types were
not revealed to the participants, but the residuals we inspected
suggest that participants were constructing them from the raw
features and then factoring them into their decisions.

Incorporating these six new features as principles resulted
in 77.1% accuracy, nearly closing the gap entirely between
our choice model and neural network performance reported
in Table 1. Figure 4 illustrates the effects of incorporating
the problem types into both the choice model and the neu-
ral network in details. Importantly, we observe that “Neural
Network + Types” outperforms “Neural Network” at smaller
dataset sizes, but performs identically at larger dataset sizes.
This result suggests that the regular “Neural Network” is con-
structing the problem types we identified as emergent features
given sufficient data to learn them from. More importantly,
our augmented choice model now rivals the neural network’s
predictive power. And yet, by virtue of it being a rational
choice model with only a few more parameters than our “Ex-
panded” (and even the “Utilitarian”) model, it remains con-
ceptually simple. Thus, we have arrived at an interpretable
statistical model that can both quantify the effects of utili-
tarian calculations and moral principles and predict human
moral judgment over a large problem space.

Figure 4b still displays a gap between the AUC curves, sug-
gesting there is more to be gained by repeating the process
and potentially identifying new even more principles. For ex-
ample, the last iteration found that when there was a humans-
versus-animals problem, humans should be strongly favored.
However, residuals suggest that participants don’t honor this
principle when all the humans are criminals. Rather, in these
cases, participants may favor the animals or prefer the crim-
inal by only a small margin. Thus, our next iteration will in-
clude a feature corresponding to whether all the humans are
criminals. Our model also underperforms by overweighting
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(a) Dataset Size vs. AIC (b) Dataset Size vs. AUC (c) Dataset Size vs. Accuracy

Figure 3: Test-set performance metrics of choice models and neural network1 as a function of dataset size. Models were trained
on five 80/20 training/test splits. Error bars indicate ±1 SEM.

Table 2: Problem Aggregate Comparisons (Left Side Save Percentage)

Left Side Agents Right Side Agents Car Side Empirical CM NN

Pregnant Woman Crossing Illegally Cat Crossing Legally Left 0.779 0.411 0.797
Stroller Crossing Illegally Cat Crossing Legally Left 0.826 0.425 0.801
Dog Crossing Legally Male Doctor Crossing Illegally Right 0.312 0.693 0.293
Cat Crossing Legally Man Crossing Illegally Right 0.308 0.692 0.266
Old Woman Crossing Illegally Cat Crossing Legally Left 0.670 0.306 0.622

(a) Problems indicating Human vs. Animals Principle

Left Side Agents Right Side Agents Car Side Empirical CM NN

Old Man Crossing Legally Boy Crossing Illegally Right 0.350 0.647 0.341
Old Woman Crossing Legally Girl Crossing Illegally Right 0.337 0.642 0.321
Man Boy Left 0.113 0.417 0.097
Old Woman Crossing Legally Girl Crossing Illegally Left 0.268 0.570 0.269
Old Woman Woman Right 0.256 0.475 0.269

(b) Problems indicating Old vs. Young Principle

the effects of intervention. In problem types such as male
versus female and fat versus fit, the intervention variable is
weighted much differently than in young-versus-old dilem-
mas. The next iteration of the model should also include this
interaction. Thus, this methodology allows us to continuously
build on top of the new features we identify.

Conclusion
Large-scale behavioral datasets have the potential to revo-
lutionize cognitive science (Griffiths, 2015), and while data
science approaches have traditionally used them to predict
behavior, they can additionally help cognitive scientists con-
struct explanations of the given behavior.

Black-box machine learning algorithms give us a sense of
the predictive capabilities of our scientific theories, and we
outline a methodology that uses them to help cognitive mod-
els reach these capabilities:

1. Amass a large-scale behavioral dataset that encompasses a
large problem space

2. Formalize interpretable theories into parameterizable psy-
chological models whose predictions can be evaluated
1While a batch size of 8,192 was used for Table 1, a batch size

of 512 was used here because of the smaller dataset sizes.

3. Compare these models to more accurate, but less inter-
pretable black-box models (e.g., deep neural networks,
random forests, etc.)

4. Identify types of problems where the black-box models
outperform the simpler models

5. Formalize these problem types into features and incorpo-
rate them into both the simple and complex models

6. Return to Step 4 and repeat

We applied this procedure to moral decision-making, start-
ing off with a rational choice model and iteratively adding
principles until it had a comparable predictive power with
black-box algorithms. This model allowed us to quanti-
tatively predict the interactions between different utilitar-
ian concerns and moral principles. Furthermore, our re-
sults regarding problem types suggest that moral judgment
can be better predicted by incorporating alignable differences
in similarity judgments (Tversky & Simonson, 1993), such
as whether the dilemma is humans-versus-animals or old-
versus-young.

The present case study, while successful, is only a limited
application of the methodology we espouse, and further
demonstrations are required to illustrate its utility. It will be
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(a) Dataset Size vs. AIC (b) Dataset Size vs. AUC (c) Dataset Size vs. Accuracy

Figure 4: Test-set performance metrics before and after incorporating new principles. Models were trained on five 80/20
training/test splits. Error bars indicate ±1 SEM.

particularly interesting to apply our method to problems with
even larger gaps between classic theories and data-driven pre-
dictive models. It is also likely that transferring insights from
data-driven models will require moving beyond the sorts of
featurization we consider here (i.e., problem clustering). In
any case, we hope the microcosm presented here will inspire
similarly synergistic approaches in other areas of psychology.
Acknowledgments. We thank Edmond Awad for providing guid-
ance on navigating the Moral Machine dataset.
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